On a class of fractional p(., .)-Kirchhoff-Schrödinger system type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

On nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$

‎Using Nehari manifold methods and Mountain pass theorem‎, ‎the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.

متن کامل

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem∗

In this paper, we establish the existence and multiplicity of solutions to the following fractional Kirchhoff-type problem M(∥u∥)(−∆)u = f(x, u(x)), in Ω u = 0 in R\Ω, where N > 2s with s ∈ (0, 1), Ω is an open bounded subset of R with Lipschitz boundary, M and f are two continuous functions, and (−∆) is a fractional Laplace operator. Our main tools are based on critical point theorems and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European journal of mathematics and applications

سال: 2023

ISSN: ['2752-7603']

DOI: https://doi.org/10.28919/ejma.2023.3.9